Tutorial for MASTAN2 v5.1Introductory Frame

Department of Civil and
Environmental Engineering UNIVERSITY OF WISCONSIN-MADISON

American Iron and Steel Institute

STEEL DECK INSTITUTE sdi

Credits

Published 2021

Developed by:
Edward J. Sippel, Ph.D. Student, University of Wisconsin - Madison
Hannah B. Blum, Assistant Professor, University of Wisconsin - Madison
Ronald D. Ziemian, Professor, Bucknell University
Joe Pote, Director of Research \& Development, New Millennium Building Systems
Scott Morton, Research and Development Engineer, New Millennium Building Systems

Sponsored by:
American Iron and Steel Institute
New Millennium Building Systems
Steel Joist Institute
Steel Deck Institute

Tutorial Sections

Section 1: Overview
Section 2: Getting Started

Section 3: 2-D Frame Analysis
Section 4: 3-D Frame Analysis
Section 5: Using MSASect
Section 6: Frame Analysis with Non-Doubly Symmetric Sections
Navigation
\| - Skip to Previous Section Title Page

- Previous Slide

工 - Return to Tutorial Sections Page

- Next Slide

D| - Skip to Next Section Title Page
D
\square - Open screenshot of MASTAN2 or additional helpful information.

Section 1: Overview

$144 \equiv \equiv$

Overview

This tutorial provides step-by-step guidance for the sample frame structure. Enough details are provided that the example model with non-doubly symmetric sections can be completed following the instructions here. Not every feature available in MASTAN2 will be mentioned nor utilized in this tutorial. For further information on several additional features within MASTAN2, it is recommended the user make use of other tutorials at http://www.mastan2.com/tutorial.html.

Problem Overview

This tutorial will start with the simple one-bay frame shown on the left. This model will then be altered to the two-bay frame shown on the right include non-doubly symmetric sections. Further details of each model will be provided in the corresponding section.

Starting Frame

Final Frame

Section 2: Getting Started

MASTAN2 General Information

MASTAN2 is an interactive graphics program that provides preprocessing, analysis, and postprocessing capabilities. Preprocessing options include definition of structural geometry, support conditions, applied loads, and element properties. The analysis routines provide the user the opportunity to perform first- or second-order elastic or inelastic analyses of two- or three-dimensional frames and trusses subjected to static and dynamic loads. Postprocessing capabilities include the interpretation of structural behavior through deformation and force diagrams, printed output, and facilities for plotting response curves. MASTAN2 is based on MATLAB®, a premier software package for numeric computing and data analysis.

In many ways, MASTAN2 is similar to today's commercially available software in functionality. The number of pre- and post-processing options, however, have been limited in order to minimize the amount of time needed for a user to become proficient at its use. The program's linear and nonlinear analysis routines are based on the theoretical and numerical formulations presented in the text Matrix Structural Analysis, 2nd Edition, by McGuire, Gallagher, and Ziemian. In this regard, the reader is strongly encouraged to use this software as a tool for demonstration, reviewing examples, solving problems, and perhaps performing analysis and design studies. Where MASTAN2 has been written in modular format, the reader is also provided the opportunity to develop and implement additional or alternative analysis routines directly within the program.

MATLAB is a registered trademark of The MathWorks, Inc., 3 Apple Hill Drive, Natick, MA 01760-2098.

Launching MASTAN2

Two versions of MASTAN2 have been developed and may be installed. One requires you to have access to MATLAB and the other does not. Both versions provide the same functionality, except that the MATLAB version also provides the user an opportunity to develop and implement additional or alternative analysis routines that will directly interact with MASTAN2. Please see the Setup Guides at www.mastan2.com.

Base Layout

In order to minimize the learning time for MASTAN2, its graphical user interface (GUI) has been designed using a simple and consistent two menu approach. Using a pull-down menu at the top of the GUI, a command is selected. Parameters are then defined in the bottom menu bar and the command is executed by using the Apply button.

Section 3: 2-D Frame Analysis

$144 \equiv$

Problem Description - Figure

The frame is constructed of A992 steel with the properties indicated. The frame is also supported out of plane in the Z direction at the ends and middle of the beam. The connections are assumed to be fixed for warping.

MASTAN2 does not assume any unit system. Models in MASTAN2 require the use of any consistent set of units. This tutorial will use kip and inch.

A few steps completed as part of this segment of the tutorial are not specifically required for a 2-D analysis. Comments are provided to identify them.

Geometry Definition

1) Start with a new, empty model.

2) From the Geometry menu select Define Frame.
3) At the bottom menu bar, click the pop-up menu to the left of bays @ and change 0 to 1 . Click in the edit box to the right of bays @ and change 0 to 720.
4) Click the pop-up menu to the left of stories @ and change 0 to 1. Click in the edit box to the right of stories @ and change 0 to 360.
5) Click on the Apply Button. A one-bay single story frame is now defined. \square

Clicking the \quad icon will advance the tutorial to a page that provides an image of the MASTAN2 interface after the corresponding step is executed. Clicking the icon on that page will return you to the step-by-step instructions. information in bottom bar. This screenshot is from a new model after MASTAN2 was already open.

Element Modification

1) From the Geometry menu select Subdivide Element(s).
2) Create the list of elements by clicking on the horizontal element.
3) Since the number of segments is already set at 2, click on the Apply button. \square
4) Create a new list of all elements by clicking the All button.
5) Click the > button to the right of \# of Segments = to increase 2 to 8.
6) Click on the Apply button. \square

Model Cleanup

These steps are not technically required; however, it will help makes it easier to find results in the model. Additionally, any reference to node or element number will be using this updated reference.

1) From the Geometry menu select Renumber Elements.
2) Click the checkbox to the left of $Y-X-Z(2 D)$. Click on the Apply button.
3) From the Geometry menu select Renumber Nodes.
4) Click the checkbox to the left of $Y-X-Z$ (2D). Click on the Apply button. \square
\square

Section Properties - Creating

1) From the Properties menu select Define Section.
2) At the bottom menu bar, click on the Database button.
3) In the pop-up menu, scroll to find Section: W10x49 and click on it.

4) Then click on the Apply button. Section 1 is now defined with the properties of $\mathrm{W} 10 \times 49$.
5) Repeat step 3 with Section: W27x84. After clicking the Apply button, Section 2 will be defined.

For the initial 2-D analysis, only Area, I z-z, and Z z-z would be required. The other section properties are only needed when moving to 3-D analysis.

Section Properties - Assigning

1) From the Properties menu select Attach Section.
2) At the bottom menu bar, use the buttons to the right of Element(s): to make the list of elements.
3) Click the Adv button to open pop-up menu. To select all the vertical elements, click the check box next to the Y -axis option. Click Add to add all vertical elements to the element list.
4) Click on the Apply button to assign Section 1. (Note that the element line style has changed from dash-dot to dashed.) \square
5) Select the Clr button located to the right of Elements: to clear the list of elements.
6) Create a list of the remaining elements by clicking the All button and then the Remove button in the pop-up menu. This should leave only the horizontal members selected.
7) Change the Section \# by clicking on the current section number, 1, just to the right to open a popup menu with all section numbers. Click on 2 to select the W27x84 section.
8) Assign Section \#2 properties by clicking the Apply button. \square

Material Properties

1) From the Properties menu select Define Material.
2) At the bottom menu bar, click in the edit box just to the right of $E=$ and change the 0 to 29000 (not 29,000). Similarly, click in the edit box just to the right of Fy= and change the inf to 50. Next, click in the edit box to the right of Name: and type A992. Click on the Apply button. (Material \#1 is now defined with the properties of A992 steel.)
3) From the Properties menu select Attach Material.
4) At the bottom menu bar, create the list of elements to be assigned the properties of Material 1 by clicking on the All button to the right of Elements:. Click on the Apply button. (Note that elements with assigned section and material properties turn solid.)

Support Conditions

1) From the Conditions menu select Define Fixities.
2) At the bottom menu bar, define a fixed support by clicking in the check boxes just to the left of all six degrees of freedom: X-disp, Y-disp, Z-disp, X-rot, Y-rot, and Z-rot.
3) Create the list of nodes to be assigned these fixities by clicking on the bottom two nodes of the model, 1 and 25.
4) Click on the Apply button.
5) From the View menu select Fit. \square

For the initial 2-D analysis, only X-disp, Y-disp, and Z-rot would need to be constrained for full fixity. The other fixities are only needed when moving to 3-D analysis.

Loading

1) From the Conditions menu select Define Forces.
2) At the bottom menu bar, click in the edit box just to the right of $\mathrm{PX}=$ and change the 0 to 10 .
3) Create the list of nodes to be assigned these forces by clicking on the upper left-hand node, 9 .
4) Click on the Apply button. \square
5) From the Conditions menu select Define Uniform Loads.
6) Since the loading input is already Element(s) local $x^{\prime}-y^{\prime}-z^{\prime}$, click in the edit box just to the right of $w y^{\prime}=$ and change 0 to -0.1.
7) Click the Adv button to open pop-up menu. Create a list of the horizontal elements by clicking the All button and then the Remove button in the pop-up menu.
8) Click on the Apply button.
9) From the View menu select Fit. \square

Naming and Saving

These steps are technically optional as you can complete analysis without saving or applying a title; however, this is a good time to complete this.

1) From the File menu select Define title. At the bottom menu bar, click in the edit box to the right of Title: and type in a brief description of this effort. This text might include the model title, your name, and/or the assignment number. Click on the Apply button.
2) From the File menu select Save As After selecting your destination folder, type in the filename Frame and click Save. Note that the top of the window has now changed to include the file name and directory as well as the time the file was last saved.

〈三

2-D First-Order Elastic Analysis

1) From the Analysis menu select Static and submenu option 1st-Order Elastic.
2) At the bottom menu bar, click on the pop-up menu just to the right of Analysis Type: and Select Planar Frame ($x-y$).
3) Click on the Apply button to perform the analysis.

4) From the Results menu select Diagrams and submenu option Deflected Shape.
5) At the bottom menu bar, click on the Apply button. \square
6) From the Results menu select Node Displacements.
7) On the undeflected shape, click on the node of interest in the upper right corner, 33, and its components are provided in the bottom menu bar. $\quad \square$

Results:

Disp X	Disp Y	Disp Z	Rot X	Rot Y	Rot Z
2.688	-0.03312	N/A	N/A	N/A	0.01235

This can be repeated for other nodes by clicking on them or click in the edit box to the right of Node:, enter the value, and click Apply.

10

Node: 33	Disp X	2.688	Disp Y	-0.03312	Disp Z		Status:		Success: Disp. at ALR $=1.0000$	
Displacements	Rot X		Rot Y		Rot Z	0.01235	(1) 1.000	\checkmark	Apply	Cancel

2-D Second-Order Elastic Analysis

1) From the Analysis menu select Static and submenu option 2nd-Order Elastic.
2) At the bottom menu bar, click on the pop-up menu just to the right of Analysis Type: and Select Planar Frame ($x-y$).
3) Click on the Apply button to perform the analysis. \square
4) From the Results menu select Node Displacements.
5) On the undeflected shape, click on the node of interest in the upper right corner, 33, and its components are provided in the bottom menu bar. \square
Results:

Disp X	Disp Y	Disp Z	Rot X	Rot Y	Rot Z
2.852	-0.05354	N/A	N/A	N/A	0.01243

Node:	33	Disp X	2.852	Disp Y	-0.05354	Disp Z				Succes	1.0000
Displacements		Rot X		Rot Y		Rot Z	0.01243	(10) 1.000	\checkmark	Apply	Cancel

Section 4: 3-D Frame Analysis

$144 \equiv$

Updating for 3-D Analysis

As is, the model could be run in 3-D. Previously having entered the complete section properties and applying full fixity to the base support nodes would be satisfactory to meet the requirements to run a 3-D analysis. However, this model would be missing the lateral support of the beam previously mentioned in the problem statement. Before proceeding, we will add that support to the frame through additional boundary conditions.

1) From the Conditions menu select Define Fixities.
2) At the bottom menu bar, define the lateral support by clicking in the check box to the left of Z-disp.
3) Create the list of nodes to be assigned these fixities by clicking on the top corner and middle nodes of the model: 9, 17, and 33.
4) Click on the Apply button. \square
5) From the View menu select Defined Views and submenu option Isometric: $x-y-z . \square$

3-D Second-Order Elastic Analysis

1) From the Analysis menu select Static and submenu option 2nd-Order Elastic.
2) At the bottom menu bar, click on the pop-up menu just to the right of Analysis Type: and Select Space Frame.
3) Click on the Apply button to perform the analysis. \square

The analysis should stop with the message Analysis Halted: Limit Reached. Often this message is related to the analysis encountering a stability limit. The use of the eigen-buckling tool may help identify the problem.

3-D Elastic Critical Load

1) From the Analysis menu select Eigen-Buckling and submenu option Elastic Critical Load.
2) At the bottom menu bar, the Analysis Type: should already be set to Space Frame with the Max. \# of Modes: set to 1 as desired.
3) Click on the Apply button to perform the analysis. \square
4) From the Results menu select Diagrams and submenu option Deflected Shape.
5) At the bottom menu bar, click the edit box to the right of Scale. Change 10 to 30 to amplify the deformed geometry in the visualization.
6) Click on the Apply button and the first mode is shown with the Applied Load Ratio identified at the top of the screen. \square

The result indicates that the beam is failing in lateral torsional buckling at only 0.687 times the applied load. Currently, the analysis does not include the warping stiffness which increases the buckling capacity of the beam. MASTAN2 can account for warping effects if the element's warping end conditions are changed.
 $+$

Adding Warping Effects

1) From the Geometry menu select Define Connections and submenu option Torsion.
2) At the bottom menu bar, click on the menu to the right of Warping Restraint for Node i and set the value to Continuous. Repeat this for the Warping Restraint for Node j.
3) Create the list of elements to be assigned continuous warping by clicking on the All button to the right of Elements:. Click on the Apply button. Note: no symbol indicates the end is free to warp, a blue + indicates continuous warping, and a blue * indicates fixed warping.

4) Click CIr to empty the list of elements. Click on the bottom element of each column and left end element of the beam to define the members that start with warping fixed and are continuous.
5) Click on the menu to the right of Warping Restraint for Node i and set the value to Fixed. Node j is set from the previous step. Click on the Apply button. \square
6) Click Clr to empty the list of elements. Click on the top element of each column and right end element of the beam.
7) Click on the menu to the right of Warping Restraint for Node i and set the value to Continuous. Click on the menu to the right of Warping Restraint for Node jand set the value to Fixed.
8) Click on the Apply button.

3-D Elastic Critical Load

1) From the Analysis menu select Eigen-Buckling and submenu option Elastic Critical Load.
2) At the bottom menu bar, the Analysis Type: should already be set to Space Frame with the Max. \# of Modes: set to 1 as desired.
3) Click on the Apply button to perform the analysis. \square
4) From the Results menu select Diagrams and submenu option Deflected Shape.
5) At the bottom menu bar, the Scale should still be set to 30 from previous analysis.
6) Click on the Apply button and the first mode is shown with the Applied Load Ratio identified at the top of the screen. \square

The result indicates that the beam is failing in lateral torsional buckling at 1.31 times the applied load.
This value is 1.9 times the result when ignoring the effects of warping stiffness. The fact that the Applied Load Ratio is greater than 1 means it should now be possible to complete the desired 3-D $2^{\text {nd }}$ order analysis.

3-D Second-Order Elastic Analysis

1) From the Analysis menu select Static and submenu option 2nd-Order Elastic.
2) At the bottom menu bar, the Analysis Type: should already be set to Space Frame as desired.
3) Click on the Apply button to perform the analysis.

4) From the Results menu select Node Displacements.
5) On the undeflected shape, click on the node of interest in the upper right corner, 33, and its components are provided in the bottom menu bar. \square Results:

Disp X	Disp Y	Disp Z	Rot X	Rot Y	Rot Z
2.852	-0.05354	0	0	0	0.01243

The deflection response is the same as 2-D as no out-of-plane loading or displacements were added.
The same axial and flexural deformations are being modeled. The introduction of the 3-D analysis highlighted the existing out-of-plane instability and the analysis could not proceed past the bifurcation load in the perfect model.

Section 5: Using MSASect

$\| 4<\equiv$

MSASect

The section properties used so far have been for doubly symmetric cross sections where we would have looked up the values or calculated them outside the program for ourselves. The updated version of MASTAN2 includes a new tool MSASect that can calculate section properties for thin wall cross sections. MSASect can be used with open and closed cross sections whether symmetric or not. In addition to the section properties used thus far, MSASect will calculate the necessary non-doubly symmetric section properties. The tool is found within the Define Section and Modify Section menu. As a demonstration, the section properties of a W27x84 cross section will be found.

Cross Section Geometry

The W27x84 cross section is shown below. Figure A illustrates the full cross section with fillets that is associated with the AISC table values. Figure B illustrates the simplified section with overlap and no fillets that represents the cross section to be calculated by MSASect. These are the dimensions to be entered when working with the template. Figure C illustrates the resulting node to node model created when using the template that will be used for calculations in MSASect.

Using MSA Sect

1) From the Properties menu select Define Section.
2) At the bottom menu bar, click on the pop-up menu on the far right that currently displays Basic. Click on Advanced and new edit boxes and buttons should appear. \square
3) Click on MSASect.

4) As the I-beam cross-section is selected by default, click the edit box to the right of B1= and enter 10. Repeat to define $B 2=10, D=26.7, \mathrm{t} 1=0.64, \mathrm{t} 2=0.64$, and $\mathrm{t} 3=0.46$.

Note: The dimensions to enter in the template correspond to Figure B on the previous page. While the section property calculations need to be completed using the dimensions shown in Figure C, this information is automatically generated based on the assumption that the numbers provided followed Figure B.
5) Click Calculate to determine the properties.

6) Click edit box to right of Name: and enter W27x84Hand.
7) Click Export to MASTAN2 to copy values to main program.
8) Click Close to return to the main window. There will often be a confirmation when closing it. \square
9) Click Apply to define Section 3. \square

MSASect Results

1) From the Properties menu select Information and submenu option Section.
2) Change the Section \# by clicking on the current section number just to the right to open a pop-up menu with all section numbers. Click on 2 to view the Section Properties based on the AISC database. Repeat with clicking on 3 to see the MSASect calculated values. \square

Property	Units	AISC	MSASect	Difference
A	in^{2}	24.7	24.79	0.4%
Izz	in^{4}	2850	2852	0.1%
lyy	in^{4}	106	106.9	0.8%
J	in^{4}	2.81	2.59	-7.7%
Cw	in^{6}	18000	18110	0.6%
Zzz	in^{3}	244	244.9	0.4%
Zyy	in^{3}	33.2	32	-3.6%

From the comparison of section properties from AISC and the values calculated by MSASect, most of the calculated properties match well. Take note that some of the template shapes calculate standard shear area values. To match the previous analysis, the $A v-v$ and $A w-w$ would need to be set to inf.

Using MSA Sect

If one of the default cross sections does not cover your situation the General option allows for the input of nodes and line segments by the user. Clicking the radio button next to General and then the Next button will open an interface that allows for the input of nodes and line segments directly. If you want to verify the final node coordinates used or tweak a default geometry, click Convert to General to gain access to the list of nodes and line segments automatically created in the MSASect interface. The following is an example of what the W24x87 would look like. Note that the coordinates correspond with Figure C shown previously. \square

4 三

Section 6: Frame Analysis with NonDoubly Symmetric Sections

Problem Description - Figure

The frame is constructed of A992 steel with the properties indicated. The frame is also supported out of plane in the Z direction on the beam at the column locations. The outer columns and top beam are assumed to be fixed for warping at the end. The beam is also continuous for warping over the middle column. The middle column is assumed to be free to warp at each end.

Adding Interior Column

1) From the Geometry menu select Define Node.
2) At the bottom menu bar, click in the edit box to the right of $x=$ and enter 360. Click in the edit box to the right of $\mathrm{y}=$ and enter 0 . Click in the edit box to the right of $\mathrm{z}=$ and enter 0 .
3) Click on the Apply Button. \square
4) From the Geometry menu select Define Element.
5) On the model, click the newly created node to define Node i. Then click the middle node of the top beam to define Node j. These nodes should be 34 and 17, respectively.
6) Click on the Apply Button.

\square

Applying Material and Section Properties

1) From the Properties menu select Attach Material.
2) Create the list of elements to be assigned the properties of Material 1 by clicking on the new column. Click on the Apply button. (Note that elements with assigned just material properties turn dotted.)

3) From the Properties menu select Define Section.
4) At the bottom menu bar, click on the Database button.
5) In the pop-up menu, scroll to find section W8x35 and click on it. Then click on the Apply button. (Section 4 is now defined with the properties of W8×35.) \square
6) From the Properties menu select Attach Section.
7) Create the list of elements to be assigned the properties of Section 4 by clicking on the new column, element 33.
8) Change the Section \# by clicking on the current section number just to the right to open a pop-up menu with all section numbers. Click on 4 to select Section \#4, W8x35.
9) Assign Section 4 properties by clicking the Apply button.

Element Modification

1) From the Geometry menu select Subdivide Element(s).
2) Create the list of elements by clicking on the new column.
3) Click the > box to the right of \# of Segments = to increase 2 to 8.
4) Click on the Apply button. (Note that same the section and material property information is given to all new elements.) \square
5) From the Conditions menu select Define Fixities.
6) At the bottom menu bar, define a pin support by clicking in the check boxes just to the left of X disp, Y-disp, and Z-disp.
7) Create the list of nodes to be assigned this fixity by clicking on the middle bottom node, 34 .
8) Click on the Apply button. \square

Warping Continuity

1) From the Geometry menu select Define Connections and submenu option Torsion.
2) At the bottom menu bar, click on the menu to the right of Warping Restraint for Node iand set the value to Continuous. Repeat this for the Warping Restraint for Node j.
3) Use the buttons to the right of Element(s): to make the list of elements. Click the Adv button to open the pop-up menu. To select all the middle column elements, click the Off button to the right of Range (Inclusive) to turn this tool On. Click the edit box to the left of X and change -Inf to 359. Click the edit box to the right of X and change Inf to 361.
4) Click Add to add all these elements to the element list. Click on the Apply button to assign continuous warping. \square

Warping Boundary Conditions

1) Click Adv to close the pop-up menu.
2) Click Clr to empty the list of elements. Click on the bottom element of the middle column to define the member that start with warping free and is continuous.
3) Click on the menu to the right of Warping Restraint for Node i and set the value to Free. Node jis set from the previous step.
4) Click on the Apply button.

5) Click Clr to empty the list of elements. Click on the top element of the middle column.
6) Click on the menu to the right of Warping Restraint for Node i and set the value to Continuous.

Click on the menu to the right of Warping Restraint for Node j and set the value to Free.
7) Click on the Apply button.

End Moment Release

1) From the Geometry menu select Define Connections and submenu option Flexure.
2) At the bottom menu bar, click on the menu to the right of Type for Node j and set the value to Pinned.
3) Create the list of elements by clicking on the top element of the middle column.
4) Click on the Apply button to apply the pin connection. Note the orange circle is displayed to signify the end that has the Mx and My moment released. Torsion cannot be released.

Node Type Pinned \quad, kz

Modifying Section Properties

1) From the Properties menu select Modify Section.
2) At the bottom menu bar, Section \#1 should be selected already. Click on the pop-up menu on the far right that current displays Basic. Click on Advanced.
3) Click on MSASect.
4) As the I-beam cross-section is selected by default, click the edit box to the right of B1= and enter 10. Repeat to define $B 2=6, D=13, \mathrm{t} 1=0.625, \mathrm{t} 2=0.375$, and $\mathrm{t} 3=0.3125$.
5) Click Calculate to determine the properties.

6) Click edit box to right of Name: and enter Mono I
7) Click Export to MASTAN2 to copy values to main program. Then click Close to return.
8) Click Apply to modify Section 1.

Column Orientation

1) Since the section was modified, the exterior columns are already assigned the appropriate section. The orientation just needs to be verified.
2) From the Geometry menu select Re-orient Element(s).
3) From the View menu select Labels and submenu option Element local $x^{\prime}-y^{\prime}-z^{\prime}$ axes. Each axis is shown with a different color line drawn in the positive direction. The x axis is purple, the y axis is blue, and the z axis is red.

4) At the bottom menu bar, click in the edit box to the right of Beta (Deg) and change 0.0 to 180.
5) Use the buttons to the right of Element(s): to make the list of elements. Click the Adv button to open the pop-up menu. To select all the right column elements, click the edit box to the left of X and change 359 to 400 . Click the edit box to the right of X and change 361 to 800 .
6) Click Add to add all these elements to the element list. Click on the Apply button to re-orient the elements. \square

3-D Second-Order Elastic Analysis

1) From the Analysis menu select Static and submenu option 2nd-Order Elastic.
2) At the bottom menu bar, the Analysis Type: should already be set to Space Frame as desired.
3) Click on the Apply button to perform the analysis. \square
4) From the Results menu select Node Displacements.
5) On the undeflected shape, click on the node of interest in the upper right corner, 33, and its components are provided in the bottom menu bar. \square
Results:

Disp X	Disp Y	Disp Z	Rot X	Rot Y	Rot Z
2.395	-0.02608	0	~ 0	~ 0	$-1.304 \mathrm{e}-4$

Additional Analysis

This final frame could also have been modeled with MASTAN2 using only the symmetric section properties. Since the frame was loaded only in plane and the non-doubly symmetric effects were not activated, the user would find that it is possible to recreate the frame without the use of advanced section properties and only input the basic section properties and calculate similar displacements.

	Disp X	Disp Y	Rot Z
Basic	2.395	-0.02608	$-1.304 \mathrm{e}-4$
Advanced	2.395	-0.02608	$-1.304 \mathrm{e}-4$

However, the evaluation of the critical buckling loads of the structure does capture the non-doubly symmetric effects. Different behavior could be observed if the user were to compare such an analysis on the frame with basic and advanced section properties. The first mode and second mode are very similar as the buckling behavior is controlled by the doubly symmetric elements. The third mode displays distinctly different behavior as the column is weaker considering singly symmetric behavior.

	Mode \#1	Mode \#2	Mode \#3
Basic	2.160	2.806	4.936
Advanced	2.160	2.805	$4.040 \square$

30

30
\# of pts

30

This completes the tutorial.

I 14 4 三

